GRANT AGREEMENT No.: 764902 Project Acronym: TOMOCON Project title: Smart tomographic sensors for advanced industrial process control Deliverable Rel. No. D7.4. EU Del. No. D25 WP No. WP7	Lead Beneficiary CTH / HZDR Type Report Date: 07.02.2022 0 Type Revision: 0			
Innovative Train				
TOMO Deliverable Title	CON			
Textbook Publication of TOMOCON Results				
Description This deliverable describes the TOMOCON Special Is the TOMOCON project results.	sue in MDPI Sensors as the final publication of			

Prepared by:	Susann Riedel	Massim Reduc	
Approved by:	Prof. Morten Fjeld / Prof. Uwe Hampel	Moster Field	U. Har
Approved by Supervisory Board:		24.02.2022	

Dissemination Level: Public

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 764902.

TOMOCON GRANT AGREEMENT No.: 764902					EMENT No.: 764902
Deliverable Title: Textbook Publication of TOMOCON Results					
Del. Rel. No. EU Del. No. WP No. Lead Beneficiary Type Date					Date
D7.4	D25	WP7	CTH / HZDR	Report	24.02.2022

Revision Sheet

Revision Number	Purpose of Revision	Effective Date
0	Initial Issue	24.02.2022

Dissemination Level: Public

TOMOCON GRANT AGREEMENT No.: 764					EMENT No.: 764902
Deliverable Title: Textbook Publication of TOMOCON Results					
Del. Rel. No. EU Del. No. WP No. Lead Beneficiary Type Date					Date
D7.4	D25	WP7	CTH / HZDR	Report	24.02.2022

Textbook Publication of TOMOCON Results

Special Issue "Tomographic Sensors for Industrial Process Control"

1. Background

Control systems in the process industry have the task of ensuring a stable processing of material streams within a well-defined sequence of operations. Such operations are, for instance, reaction, separation, crystallization, solidification, mixing, and drying. For that purpose, the contemporary process industry typically employs control systems with local sensors for, e.g., temperature, pressure, flow, and filling level. With the ongoing progress in sensor development, there is now a growing interest in using sensors with higher complexity in industrial control systems. One such category is process tomography sensors.

Process tomography is an established class of imaging techniques, used to obtain 2D or 3D information of the distribution and flow of materials in pipes and vessels. Compared to its counterparts in medical diagnostics and non-destructive testing, process tomography typically targets high scanning speed rather than high spatial resolution. In recent years, a number of different process tomography modalities have evolved. These are, for example, electrical tomography, magnetic tomography, ultrasound tomography, microwave tomography, and optical tomography. However, some of the classical tomography modalities, such as X-ray tomography, emission tomography, and magnetic resonance imaging, have also been made fast enough to study industrial processes.

With respect to industrial process control, tomographic imaging had so far been of lesser consideration as real time reconstruction and feature extraction was difficult to achieve. However, recent developments in powerful and smart massive parallel computing architectures have changed the game. Process tomography can now be turned into a powerful sensor element for tomography-based process control.

2. Overview of TOMOCON Special Issue

The Special Issue "Tomographic Sensors for Industrial Process Control" in MDPI Sensors is summarizing the main project results of the TOMOCON project thereby presenting the latest scientific and technical achievements in the field of process control using process tomography techniques. The Special Issue especially focuses on a holistic demonstration of this technology for typical industrial processes in the fields of chemical, environmental, and energy engineering. The presented technical solutions include tomography sensors, data processing, and control strategies with a proof-of-principle demonstration. The contributions also deal with new concepts for hardware and software, e.g., real-time tomographic sensing and data processing as well as novel theoretical control concepts for the use of tomography sensors in control loops.

The guest editor of the Special Issue is Prof. Uwe Hampel who is also the Coordinator of the TOMOCON project. All publications of the Special Issue have been peer-reviewed and published open access. The special issue has also been open for researchers who are not part of the TOMOCON project but have been interested in publishing their latest research results in the field of process control using process tomography techniques. The deadline for manuscript submissions is 30th April 2022.

TOMOCON GRANT AGREEMENT No.: 7649					EMENT No.: 764902
Deliverable Title: Textbook Publication of TOMOCON Results					
Del. Rel. No. EU Del. No. WP No. Lead Beneficiary Type Date					Date
D7.4	D25	WP7	CTH / HZDR	Report	24.02.2022

For more information, please see: <u>https://www.mdpi.com/journal/sensors/special_issues/TSIPC</u>

3. Published papers (until 28.02.2022)

The following 10 papers have been published by 28.02.2022:

Yuchong Zhang, Adel Omrani, Rahul Yadav, Morten Fjeld, Supporting Visualization Analysis in Industrial Process Tomography by Using Augmented Reality—A Case Study of an Industrial Microwave Drying System. *MDPI Sensors*, 21/19, 6515 (2021); <u>https://doi.org/10.3390/s21196515</u>

Rahul Yadav, Adel Omrani, Guido Link, Marko Vauhkonen, Timo Lähivaara, Microwave Tomography Using Neural Networks for Its Application in an Industrial Microwave Drying System. *MDPI Sensors*, 21/20, 6919 (2021); <u>https://doi.org/10.3390/s21206919</u>

Soheil Aghajanian, Guruprasad Rao, Vesa Ruuskanen, Radosław Wajman, Real-Time Fault Detection and Diagnosis of CaCO₃ Reactive Crystallization Process by Electrical Resistance Tomography Measurements. *MDPI Sensors*, 21/21, 6958 (2021); https://doi.org/10.3390/s21216958

Panagiotis Koulountzios, Soheil Aghajanian, Tomasz Rymarczyk, Tuomas Koiranen, Manuchehr Soleimani, An Ultrasound Tomography Method for Monitoring CO₂ Capture Process Involving Stirring and CaCO₃ Precipitation. *MDPI Sensors*, 21/21, 6995 (2021); <u>https://doi.org/10.3390/s21216995</u>

Marzieh Hosseini, Anna Kaasinen, Mahdi Aliyari Shoorehdeli, Guido Link, Timo Lähivaara, Marko Vauhkonen, System Identification of Conveyor Belt Microwave Drying Process of Polymer Foams Using Electrical Capacitance Tomography. *MDPI Sensors*, 21/21, 7170 (2021); https://doi.org/10.3390/s21217170

Adel Omrani, Rahul Yadav, Guido Link, Timo Lähivaara, Marko Vauhkonen, John Jelonnek, An Electromagnetic Time-Reversal Imaging Algorithm for Moisture Detection in Polymer Foam in an Industrial Microwave Drying System. *MDPI Sensors*, 21/21, 7409 (2021); <u>https://doi.org/10.3390/s21217409</u>

Thomas Suppan, Markus Neumayer, Thomas Bretterklieber, Stefan Puttinger, Hannes Wegleiter, A Model-Based Analysis of Capacitive Flow Metering for Pneumatic Conveying Systems: A Comparison between Calibration-Based and Tomographic Approaches. *MDPI Sensors*, 22/3, 856 (2022); <u>https://doi.org/10.3390/s22030856</u>

Prima Asmara Sejati, Noritaka Saito, Yosephus Ardean Kurnianto Prayitno, Koji Tanaka, Panji Nursetia Darma, Miku Arisato, Kunihiko Nakashima, Masahiro Takei, On-Line Multi-Frequency Electrical Resistance Tomography (mfERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide. *MDPI Sensors*, 22/3, 1025 (2022); <u>https://doi.org/10.3390/s22031025</u>

Rasmus Eilkær Hansen, Thorsten Bæk, Simon Lehnskov Lange, Niels Møller Israelsen, Markku Mäntylä, Ole Bang, Christian Rosenberg Petersen, Non-Contact Paper Thickness

Dissemination Level: Public

TOMOCON GRANT AGREEMENT No.: 764902					EMENT No.: 764902
Deliverable Title: Textbook Publication of TOMOCON Results					
Del. Rel. No.	Del. Rel. No. EU Del. No. WP No. Lead Beneficiary Type Date				
D7.4	D25	WP7	CTH / HZDR	Report	24.02.2022

and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy. *MDPI Sensors*, 22/4, 1549 (2022); <u>https://doi.org/10.3390/s22041549</u>

Muhammad Awais Sattar, Matheus Martinez Garcia, Luis M. Portela, Laurent Babout, A Fast Electrical Resistivity-Based Algorithm to Measure and Visualize Two-Phase Swirling Flows. *MDPI Sensors*, 22/5, 1834 (2022); <u>https://doi.org/10.3390/s22051834</u>

TOMOCON intends to publish 4 more journal articles by the end of the submission deadline on 30th April 2022.

